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Abstract
In this work, the theory for the acoustic radiation force on cylinders in a
standing wave is extended to the case of cylinders coated with a viscoelastic
polymer-type layer and immersed in ideal compressible fluids. Moreover, two
different expressions for the radiation force function Yst (which is the radiation
force per unit cross-sectional surface and unit energy density) for elastic
cylinders are compared. The first expression for the radiation force function is
obtained on the basis of the far-field derivation approach; however, the second
expression is obtained from the near-field solution. It is demonstrated that
the computational differences are commensurate with the same result. In the
second step, calculations for the radiation force function are performed for
an elastic brass cylinder coated by a viscoelastic (sound absorptive) phenolic
polymer layer for four thicknesses of the outer covering layer. Additional
calculations are also performed to investigate the fluid-loading effect on the
radiation force function curves. Some of the results for the radiation force
can be relevant to the non-contact manipulation of coated tubular phantoms in
space-related applications.

PACS numbers: 43.20.+g, 43.25.+y

1. Introduction

The fundamental problem related to the calculation of the acoustic radiation force on a rigid
cylinder in both progressive and standing plane waves was reported in the early-published
work of Awatani [1]. His derivation included a dipole (n = 1) term in the acoustic scattered
field leading the cylinder to be movable. In that study, the radiation force was numerically
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evaluated in a small range of dimensionless frequency (0 � ka � 5; k is the wave vector of the
incident wave in the fluid medium, a is the cylinder’s radius) based on a near-field derivation
approach. Afterwards, Hasegawa et al [2] extended Awatani’s work by including the effects
of compressibility as well as the elastic vibrations of the cylinder only for the case of incident
plane progressive or travelling waves. In the long sound wavelength limit (Rayleigh regime in
which ka �1), it was shown that the effect of elasticity can be ignored. However, deviations
from Awatani’s theory appeared for ka � 2 and gave rise to sharp maxima and minima related
to the cylinder’s resonance elastic vibrational modes. The case of elastic cylindrical and
spherical shells in plane progressive waves was also examined [3] and extended to take into
account compressional and shear waves’ absorption inside the shells’ materials [4, 5].

On the other hand, the study of the acoustic radiation force on cylinders in plane standing
waves in non-viscous fluids gained a particular attention in muscle research to measure the
tensile strength of a protein filament [6]. In that work, Wu et al [6] gave a long-wavelength
approximation for the radiation force on a rigid circular cylinder (protein filament) for the
situation where the cylinder’s axis was constrained to be parallel to the equi-amplitude surfaces
of a plane standing wave. Their derivation was limited to include a quadrupole (n = 2) term
in the acoustic scattered field. However, it is anticipated that the truncation of the series will
lead to significant errors when their derivation is compared with more complete solutions.
In a recent work [7], approximate calculations of the radiation force on small moveable and
immovable cylinders in plane standing waves in non-viscous fluids have been carried out in
the limit ka � kh (h is the distance in the x-direction from the nearest pressure antinode to
the centre of the cylinder), in which a quadrupole (n = 2) term was included in the acoustic
scattered field as well.

The study of the radiation force on cylinders in plane standing waves has also found
another application in fluid dynamic research. One of the interests in this problem was
motivated by the essential need to understand the Rayleigh–Plateau capillary instabilities
exhibited by long liquid bridges [8–10]. Moreover, in microgravity environment provided by
Space flights, intense interest has arisen in non-contact and non-destructive measurement of
materials’ physical properties, especially for the container-less processing of elongated tubular
specimens in acoustic levitation applications [11, 12].

Recently, the acoustic radiation force on rigid immovable, elastic and viscoelastic
cylinders [13] and shells [14, 15] immersed in non-viscous fluids in plane stationary and
quasistationary waves is theoretically studied, based on the integration of the time-averaged
momentum flux tensor over the equilibrium surface of the circular cylinder (near-field
derivation approach). In that work, the radiation force function formulation is simplified
mathematically and improved into a more general form in view of the other existing
expressions. The radiation force function, which is the radiation force per unit energy density
and unit cross-sectional surface of the cylinder, is plotted versus the dimensionless frequency
for various materials. On the other hand, Wei et al [16] have deduced another formula for the
radiation force function in a perfect standing wave. According to their method, the force is
calculated from the far-field acoustic scattering. This method was previously used to calculate
the acoustic radiation force on small spheres and bubbles [17–19].

The two approaches mentioned above must lead to the same result. Differences, however,
exist with respect to the analytical expressions. The present paper is an attempt to investigate
the above-mentioned problem based on numerical analyses. Moreover, the theory is extended
here to the case of cylinders coated by a viscoelastic layer of polymer-type material and
placed in a plane stationary or standing wave. It is particularly interesting to study the
radiation force on coated tubular (elastic or viscoelastic) specimens in non-contact and non-
destructive procedures for space-related applications, since these processes usually concern
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Figure 1. Geometry of the layered cylinder placed in a standing plane-wave field. Media 1, 2 and
3 correspond to the exterior fluid, coating layer and solid core materials, respectively.

the manipulation of core media within coated objects. The theory gives a priori information
on the magnitude of the force used to manipulate or levitate coated cylindrical specimens in
a low-gravity environment. Additional numerical calculations for the radiation force function
are performed for a brass elastic cylinder coated by a viscoelastic phenolic polymer layer for
four thicknesses of the outer covering. Furthermore, the fluid-loading effect on the radiation
force function curves is analysed as well by considering a high-density fluid surrounding the
layered cylinders.

2. Method

For layered cylinders, the exact evaluation of the radiation force involves the complete solution
of the associated acoustic scattering problem. Hence, the acoustic scattering problem should
be solved first. The radiation force is then determined by integrating the time-averaged
momentum-flux tensor over the equilibrium surface of the cylinder in an ideal fluid.

2.1. Determination of the total velocity potential in terms of cylindrical wavefunctions

The geometry and the coordinate system used are shown in figure 1. The centre of the layered
cylinder coincides with the origin of a rectangular coordinate system, and the plane waves
approach the cylinder along the positive and negative x-axes (θ = 0 and π , respectively).

The Helmholtz equation describing the wave propagation in the medium is given by(∇2 + k2
1

)
ϕ1 = 0, (1)

where the compressional wave number in the exterior fluid (medium 1) is k1 = ω/c1.
The time-independent total scalar velocity potential in a standing wave field (solution of

equation (1)) is the sum of the incident and scattered fields that can be expressed in cylindrical
coordinates by [13]

ϕ1(r, θ) =
∞∑

n=0

�n,1εni
n
(
Jn(k1r) + anH

(1)
n (k1r)

)
cos(nθ), (2)

where �n,1 = �0{eik1h + (−1)n e−ik1h}, �0 is the amplitude, h is the distance in the x-direction
from the nearest pressure antinode to the centre of the cylinder, εn is the Neumann factor
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which is defined by ε0 = 1, and εj = 2, j = 1, . . . , n, Jn(·) and H(1)
n (·) are the cylindrical

Bessel and Hankel functions of the first kind of order n, respectively, and an are the unknown
scattering coefficients that will be determined by the appropriate boundary conditions.

The waves inside the layered cylinder (media 2 and 3) are represented by suitable solutions
of the Helmholtz equations:(∇2 + k2

L,2,3

)
�2,3 = 0, (3)(∇2 + k2

S,2,3

)
�2,3 = 0, (4)

where

kL,2,3 = ω

[(λ2,3 + 2µ2,3)/ρ2,3]1/2
, and kS,2,3 = ω

[µ2,3/ρ2,3]1/2
,

refer to the longitudinal and shear wave numbers in the solid media, respectively.
Similarly, the longitudinal and shear waves inside the layer (medium 2) are represented

in cylindrical coordinates by

�2(r, θ) =
∞∑

n=0

�n,L,2εni
n(bnJn(kL,2r) + cnYn(kL,2r)) cos(nθ), (5)

�2(r, θ) =
∞∑

n=0

�n,S,2εni
n(dnJn(kS,2r) + enYn(kS,2r)) sin(nθ), (6)

where Yn(·) are the cylindrical Bessel functions of the second kind. Sound absorption by the
viscoelastic layer is customarily modelled by introducing complex size parameters (or wave
numbers, respectively), accounting for losses inside the covering layer. Incorporating complex
wave numbers into the acoustic scattering theory holds only for linear viscoelasticity [20–24].

In the core material (medium 3), the potentials solution of equations (3) and (4) are given
by

�3(r, θ) =
∞∑

n=0

�n,L,3εni
nfnJn(kL,3r) cos(nθ), (7)

�3(r, θ) =
∞∑

n=0

�n,S,3εni
ngnJn(kS,3r) sin(nθ). (8)

The parameters, an, bn, cn, dn, en, fn and gn, are the unknown coefficients determined from the
following boundary conditions:

• At the outside boundary of the coated cylinder (interface at media 1 and 2), the
displacements (velocities) and normal stresses must be continuous and the tangential
stresses must be zero, leading to

• v(1)
r

∣∣
r=c

= −iωU(2)
r

∣∣
r=c

;
• σ (1)

rr

∣∣
r=c

= σ (2)
rr

∣∣
r=c

;
• σ

(2)
rθ

∣∣
r=c

= 0.
• At the interface between the outer layer and core material (interface at media 2 and 3), the

radial and tangential displacements are continuous, and the radial and tangential stresses
of adjoining materials are equal:

• U(2)
r

∣∣
r=b

= U(3)
r

∣∣
r=b

;
• U

(2)
θ

∣∣
r=b

= U
(3)
θ

∣∣
r=b

;
• σ (2)

rr

∣∣
r=b

= σ (3)
rr

∣∣
r=b

;
• σ

(2)
rθ

∣∣
r=b

= σ
(3)
rθ

∣∣
r=b

.
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The detailed expressions of the velocities, displacements and stress components are given
in appendix A.

The boundary conditions lead to seven linear equations with seven (scattering) coefficients.
The general solution for an is given by

an =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ∗
1 λ12 λ13 λ14 λ15 0 0

λ∗
2 λ22 λ23 λ24 λ25 0 0

0 λ32 λ33 λ34 λ35 0 0
0 λ42 λ43 λ44 λ45 λ46 λ47

0 λ52 λ53 λ54 λ55 λ56 λ57

0 λ62 λ63 λ64 λ65 λ66 λ67

0 λ72 λ73 λ74 λ75 λ76 λ77

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ11 λ12 λ13 λ14 λ15 0 0
λ21 λ22 λ23 λ24 λ25 0 0
0 λ32 λ33 λ34 λ35 0 0
0 λ42 λ43 λ44 λ45 λ46 λ47

0 λ52 λ53 λ54 λ55 λ56 λ57

0 λ62 λ63 λ64 λ65 λ66 λ67

0 λ72 λ73 λ74 λ75 λ76 λ77

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (9)

where λ∗
1, λ∗

2 and λij are the dimensionless elements of the determinants given in appendix B.
The coefficient is a complex number which can be written as an = αn + iβn.

2.2. Acoustic radiation force on a layered cylinder–comparison of two solutions

Wei et al [16] have developed a solution for the radiation force function for cylinders in a
standing wave, based on the far-field acoustic scattered field. According to their theory,

Y far-field
st = 4

k1c

N→∞∑
n=0

(−1)n+1[εnβn + 2(αn+1βn − αnβn+1)], (10)

where αn and βn are real and imaginary parts of the scattering coefficients an defined by
equation (9).

On the other hand, the solution developed in [13] gives the following expression for the
radiation force function for cylinders in a standing wave:

Y near-field
st = 4

k1c

N→∞∑
n=0

(−1)n+1[(1 + 2αn+1)βn − (1 + 2αn)βn+1]. (11)

Following the method previously developed in [25], the nth terms on the right-hand sides of
equations (10) and (11) were evaluated numerically:

Y far-field
N = 4

k1c
(−1)n+1[εnβn + 2(αn+1βn − αnβn+1)], (12)

and

Y near-field
N = 4

k1c
(−1)n+1[(1 + 2αn+1)βn − (1 + 2αn)βn+1]. (13)

As an example of this comparison, a stainless steel cylinder suspended in a plane standing
wave in water is considered. The mechanical properties of this material used in the calculations
are listed in table 1. It is also crucial to extend the maximum index N (= 40 for this example)
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Figure 2. Values of the functions Y far-field
N and Y near-field

N given by equations (12) and (13) versus
n, for a stainless steel cylinder without coating (e1 = 1) for k1c = 20.

Table 1. Material parameters used in the numerical calculations.

Mass density Compressional Shear velocity Normalized longitudinal Normalized shear
Material (103 kg m−3) velocity (m s–1) (m s–1) absorption γ21 absorption γ22

Brass 8.1 3830 2050 – –
Phenolic polymer 1.22 2840 1320 0.0119 0.0257
Mercury 13.6 1407 – – –
Water 1.00 1500 – – –

to exceed k1c to ensure proper convergence. According to the theory developed in [13] the
corresponding value of Yst is 0.1205 at k1c = 20.

Equations (12) and (13) are plotted versus n in figure 2. As seen in this figure, one can
obviously observe the great difference between the two plots. This makes serious doubt about
the agreement between the two theories since Wei et al [16] anticipated the equivalence that
should exist between the near and far-field solutions. However, in point of fact, it is the sum
of Y far-field

N or Y near-field
N for all n, but not the nth term itself that should be evaluated. Therefore,

summing up Y far-field
N or Y near-field

N for all values of n, we obtain the same value of 0.1205 as
Yst values of both theories, for k1c = 20. Therefore, it is suggested that the two solutions are
numerically equivalent in spite of the apparent discrepancy. This is explained as follows: if
we denote by �N the difference between the partial sums up to n = N in equations (12) and
(13) we obtain

�N =
N∑

n=0

(
Y far-field

N − Y near-field
N

)
,

= 8

k1c

N∑
n=0

(−1)n+1[βn(εn − 1) + βn+1],

= 8

k1c
(−1)N+1βN+1.

(14)
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Figure 3. Yst curves for a coated brass cylinder immersed in water for four thicknesses of the
coating viscoelastic layer, with (solid line) and without (dashed line) absorption. The coating
material is chosen to be phenolic polymer. Note that e1 = 1 corresponds to the case of an uncoated
cylinder.

It can be numerically proved that βN+1 is at most a small quantity so long as equation (10) or
(11) is convergent. Hence, lim

N→∞
�N = 0, and the two solutions, i.e. equations (10) and (11)

are numerically equivalent.

3. Numerical results and discussion

The objective here is to show a few numerical calculations of the radiation force function
for standing waves for coated cylinders immersed in water and mercury, respectively, using
equation (11) as a function the size parameter x = k1b. Both core and layer materials could be
absorbent; however, in our case, the outer layer consists of phenolic polymer; a viscoelastic
material, and the core material of brass material that is considered to be elastic and loss-less.
These types of materials are chosen as an example to illustrate the theory. The mechanical
parameters for these materials used in the calculations are given in table 1. Absorption of
sound inside the outer layer is included by introducing complex size parameters in the theory
(see appendix B). The normalized absorption coefficients for both compressional and shear
waves are listed in table 1. The thickness of the viscoelastic layer is e1 = c/b (figure 1).

Radiation force function curves are plotted with particular emphasis on the effect of
absorption and the thickness of the outer covering by varying the parameter e1. Computations
for brass cylinders are performed in a large range of dimensionless frequency 0 � x � 20 by
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Figure 4. Yst curves for a coated brass cylinder immersed in mercury with (solid line) and without
(dashed line) absorption. It is obvious that increasing the layer thickness for small k1b values causes
the radiation force to be more attractive (Y e1=1.5

st |k1b=0.65 < Y
e1=1.1
st |k1b=1.1 < Y

e1=1.01
st |k1b=1.29).

intervals of 0.001. It is very important to choose a sufficiently small sampling step to allow
capturing the resonance peaks that are very sharp. One hundred fifty terms are kept in the sum
(i.e. equation (11)) used to generate the Yst curves to insure proper convergence of the series.

According to the model previously developed in [13], the force-per-length is expressed as

Fx = YstScEp sin(2k1h), (15)

where Sc is the cross-sectional surface for a unit-length cylinder, and Ep is the mean energy
density for plane progressive waves. Thus, the radiation force vanishes for k1h = ± nπ

2 . If
the cylinder is centred on a pressure antinode, n = 0, and if it is centred or on a pressure
node, n = 1, 2, . . . . The magnitude of the radiation force is maximum when the cylinder is at
the intermediate location determined by k1h = ±(2n + 1) π

4 ; n = 0, 1, . . . . Moreover, when
Yst > 0, the radiation force is repulsive and pushes the cylinder towards a pressure node, and
when Yst > 0, the radiation force is attractive and pushes the cylinder towards a pressure
antinode.

Figure 3 shows the radiation force function for a layered cylinder immersed in water
with and without taking absorption into account inside the outer covering layer, for four layer
thicknesses. At low k1b values, one notes that the radiation force is repulsive (Yst > 0). The
radiation force function for e1 = 1 corresponds to a cylinder without coating. Since each of
the plots is the sum of many (i.e. 150) partial-waves or normal modes, which interfere one
with the other in a sensitive way, Yst exhibits many rapid oscillations, peaks and dips which
are due to resonances excited in the cylinder as well as in the coating layer by the incident
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field. Undoubtedly, the effect of increasing the absorbing outer covering layer thickness has a
prominent effect in damping and shifting the resonance peaks of the Yst curves.

The case of a brass cylinder coated by a phenolic polymer layer immersed in mercury
is an example of a situation where the fluid-loading has a significant effect on the radiation
force. Figure 4 shows the variations of the Yst curves with and without absorption in the
covering layer. In figure 4, we note that increasing the layer thickness at low k1b values
decreases Yst with and without including the effect of absorption within the coating layer.
Therefore, the radiation force becomes more attractive when the layer thickness increases.
Moreover, the fluid-loading produces interactions between various resonance modes, which is
especially observed in the bandwidth 5 � x = k1b � 15 for e1 = 1.01; a series of successive
resonance peaks tend to appear which correspond to the coupled vibrations of the cylinder and
the viscoelastic layer. When the surrounding fluid medium changes from water to mercury,
the resonance peak (maximum), observed at low k1b values in figure 3, is transformed into a
minimum (figure 4) and shifts to low k1b values as the thickness of the outer covering layer
increases.

4. Conclusion

In this paper, the theory for the acoustic radiation force in a standing plane wave is extended
to the case of layered cylinders. Particular attention is directed towards sound absorption
inside the viscoelastic layer and its effect on the radiation force function curves. By varying
the coating layer thickness, additional resonance modes are excited which appear as a series
of maxima and minima peaks in the radiation force function curves. As of the result of
increasing the fluid-loading and the thickness of the outer covering layer, the radiation force
becomes more attractive at low k1b values. These numerical computations show that the results
previously obtained for cylinders [13] and cylindrical shells [15] can be reproduced by varying
the core and layered media’ mechanical parameters. Moreover, it is demonstrated that the
expressions for the radiation force functions in the near- and far-field derivation approaches
are equivalent and give the same result.

After this manuscript had been submitted for publication, another paper on the equivalence
of near- and far-field solutions appeared in JASA [26]. The authors of [26] showed that using
an appropriate grouping of terms, the radiation force function Yst for cylinders in a plane
standing wave based on far-field acoustic scattering [16] is transformed to the expression
given by equation (11) and published previously in [13, 15]. There is an excellent qualitative
and quantitative agreement between the demonstration in section 2.2 of this present paper and
their approach.

Appendix A. Field equations

The basic field equations in cylindrical coordinates are given as follows; the velocity component
of the wave in the exterior fluid medium is v(1)

r = − ∂ϕ1

∂r
, where ϕ1 is given by equation (7).

Similarly, the displacements expressed in terms of potentials in the layered cylinder are

U(2,3)
r = ∂�2,3

∂r
+

1

r

∂�2,3

∂θ
, U

(2,3)
θ = 1

r

∂�2,3

∂θ
− ∂�2,3

∂r
,

where �2,3 and Ψ2,3(0, 0,Ψ2,3) are the scalar and vector potentials, with their components
given in equations (5)–(8).
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The stress component in the exterior fluid is σ (1)
rr = iωρ1ϕ1,where ρ1 is the exterior fluid

mass density, and the stresses components in the layered cylinder are

σ (2,3)
rr = 2µ2,3

∂U(2,3)
r

∂r
+ λ2,3(∇ · U2,3),

σ
(2,3)
rθ = µ2,3

(
1

r

∂U(2,3)
r

∂θ
+ r

∂

∂r

(
U

(2,3)
θ

r

))
= µ2,3

(
1

r

∂U(2,3)
r

∂θ
+

∂U
(2,3)
θ

∂r
− U

(2,3)
θ

r

)
,

where λ2,3 and µ2,3 are the Lamé coefficients and U2,3 = ∇�2,3 + (∇ × Ψ2,3) is the vector
displacement.

Appendix B. Matrix elements

The parameters ρ1 and ρ2 are the mass densities of the fluid surrounding the cylinder and
the viscoelastic coating, respectively. The parameters e1 = c/b; where c and b are the outer
and inner radii (figure 1), x = k1b; where k1 = ω

c1
and c1 is the sound velocity in the fluid

medium, x̃21 = x c1
c21

(1 + iγ21) and x̃22 = x c1
c22

(1 + iγ22) where c21 and c22 are the compressional
and shear sound velocities in the viscoelastic layer and γ 21 and γ 22 are their corresponding
absorption coefficients (table 1), respectively, x31 = x c1

c31
and x32 = x c1

c32
where c31 and c32

are the compressional and shear sound velocities in the core material, respectively. y1 = xe1,
ỹ21 = x̃21e1, ỹ22 = x̃22e1, y31 = x31e1, y32 = x32e1 and �23 = ρ2

ρ3

( c22
c32

)2
, where ρ3 is the core

material mass density.
The following terms are the expressions for the elements of determinants appearing in

equation (9).

λ11 = ρ1

ρ2
ỹ2

22H
(1)
n (y1),

λ12 = (
2n2 − ỹ2

22

)
Jn(ỹ21) − 2ỹ21J

′
n(ỹ21),

λ13 = (
2n2 − ỹ2

22

)
Yn(ỹ21) − 2ỹ21Y

′
n(ỹ21),

λ14 = 2n(ỹ22J
′
n(ỹ22) − Jn(ỹ22)),

λ15 = 2n(ỹ22Y
′
n)((ỹ22) − Yn(ỹ22)),

λ21 = −y1H
(1)′
n (y1),

λ22 = ỹ21J
′
n(ỹ21),

λ23 = ỹ21Y
′
n(ỹ21),

λ24 = nJn(ỹ22),

λ25 = nYn(ỹ22),

λ32 = 2n(Jn(ỹ21) − ỹ21J
′
n(ỹ21)),

λ33 = 2n(Yn(ỹ21) − ỹ21Y
′
n(ỹ21)),

λ34 = 2ỹ22J
′
n(ỹ22) − (

2n2 − ỹ2
22

)
Jn(ỹ22),

λ35 = 2ỹ22Y
′
n(ỹ22) − (

2n2 − ỹ2
22

)
Yn(ỹ22),

λ42 = x̃21J
′
n(x̃21),

λ43 = x̃21Y
′
n(x̃21),

λ44 = nJn(x̃22),

λ45 = nYn(x̃22),

λ46 = −x31J
′
n(x31),



Theoretical calculation of the acoustic radiation force on layered cylinders in a plane standing wave 6095

λ47 = −nJn(x32),

λ52 = −nJn(x̃21),

λ53 = −nYn(x̃21),

λ54 = −x̃22J
′
n(x̃22),

λ55 = −x̃22Y
′
n(x̃22),

λ56 = nJn(x31),

λ57 = x32J
′
n(x32),

λ62 = �23
((

2n2 − x̃2
22

)
Jn(x̃21) − 2x̃21J

′
n(x̃21)

)
,

λ63 = �23
((

2n2 − x̃2
22

)
Yn(x̃21) − 2x̃21Y

′
n(x̃21)

)
,

λ64 = 2n�23(x̃22J
′
n(x̃22) − Jn(x̃22)),

λ65 = 2n�23(x̃22Y
′
n(x̃22) − Yn(x̃22)),

λ66 = 2x31J
′
n(x31) − (

2n2 − x2
32

)
Jn(x31),

λ67 = 2n(Jn(x32) − x32J
′
n(x32)),

λ72 = 2n(Jn(x̃21) − x̃21J
′
n(x̃21)),

λ73 = 2n(Yn(x̃21) − x̃21Y
′
n(x̃21)),

λ74 = 2x̃22J
′
n(x̃22) − (

2n2 − x̃2
22

)
Jn(x̃22),

λ75 = 2x̃22Y
′
n(x̃22) − (

2n2 − x̃2
22

)
Yn(x̃22),

λ76 = 2n

�23
(x31J

′
n(x31) − Jn(x31)),

λ77 = 1

�23

((
2n2 − x2

32

)
Jn(x32) − 2x32J

′
n(x32)

)
,

λ∗
1 = −ρ1

ρ2
ỹ2

22Jn(y1),

λ∗
2 = y1J

′
n(y1).
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